Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases λ and β on normal and repetitive DNA sequences

نویسندگان

  • Emmanuele Crespan
  • Tibor Czabany
  • Giovanni Maga
  • Ulrich Hübscher
چکیده

'Classical' non-homologous end joining (NHEJ), dependent on the Ku70/80 and the DNA ligase IV/XRCC4 complexes, is essential for the repair of DNA double-strand breaks. Eukaryotic cells possess also an alternative microhomology-mediated end-joining (MMEJ) mechanism, which is independent from Ku and DNA ligase 4/XRCC4. The components of the MMEJ machinery are still largely unknown. Family X DNA polymerases (pols) are involved in the classical NHEJ pathway. We have compared in this work, the ability of human family X DNA pols β, λ and μ, to promote the MMEJ of different model templates with terminal microhomology regions. Our results reveal that DNA pol λ and DNA ligase I are sufficient to promote efficient MMEJ repair of broken DNA ends in vitro, and this in the absence of auxiliary factors. However, DNA pol β, not λ, was more efficient in promoting MMEJ of DNA ends containing the (CAG)n triplet repeat sequence of the human Huntingtin gene, leading to triplet expansion. The checkpoint complex Rad9/Hus1/Rad1 promoted end joining by DNA pol λ on non-repetitive sequences, while it limited triplet expansion by DNA pol β. We propose a possible novel role of DNA pol β in MMEJ, promoting (CAG)n triplet repeats instability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.

Microhomology-mediated end joining (MMEJ) joins DNA ends via short stretches [5-20 nucleotides (nt)] of direct repeat sequences, yielding deletions of intervening sequences. Non-homologous end joining (NHEJ) and single-strand annealing (SSA) are other error prone processes that anneal single-stranded DNA (ssDNA) via a few bases (<5 nt) or extensive direct repeat homologies (>20 nt). Although th...

متن کامل

DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae.

Maintenance of genome stability is carried out by a suite of DNA repair pathways that ensure the repair of damaged DNA and faithful replication of the genome. Of particular importance are the repair pathways, which respond to DNA double-strand breaks (DSBs), and how the efficiency of repair is influenced by sequence homology. In this study, we developed a genetic assay in diploid Saccharomyces ...

متن کامل

Microhomology Directs Diverse DNA Break Repair Pathways and Chromosomal Translocations

Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called "microhomology," yet the genetic pathway(s) responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR) events after a DNA double-strand break ...

متن کامل

DNA Fingerprinting Based on Repetitive Sequences of Iranian Indigenous Lactobacilli Species by (GTG)5- REP-PCR

Background and Objective: The use of lactobacilli as probiotics requires the application of accurate and reliable methods for the detection and identification of bacteria at the strain level. Repetitive sequence-based polymerase chain reaction (rep-PCR), a DNA fingerprinting technique, has been successfully used as a powerful molecular typing method to determine taxonomic and phylogenetic relat...

متن کامل

In vitro gap-directed translesion DNA synthesis of an abasic site involving human DNA polymerases epsilon, lambda, and beta.

DNA polymerase (pol) ε is thought to be the leading strand replicase in eukaryotes, whereas pols λ and β are believed to be mainly involved in re-synthesis steps of DNA repair. DNA elongation by the human pol ε is halted by an abasic site (apurinic/apyrimidinic (AP) site). In this study, we present in vitro evidence that human pols λ, β, and η can perform translesion synthesis (TLS) of an AP si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012